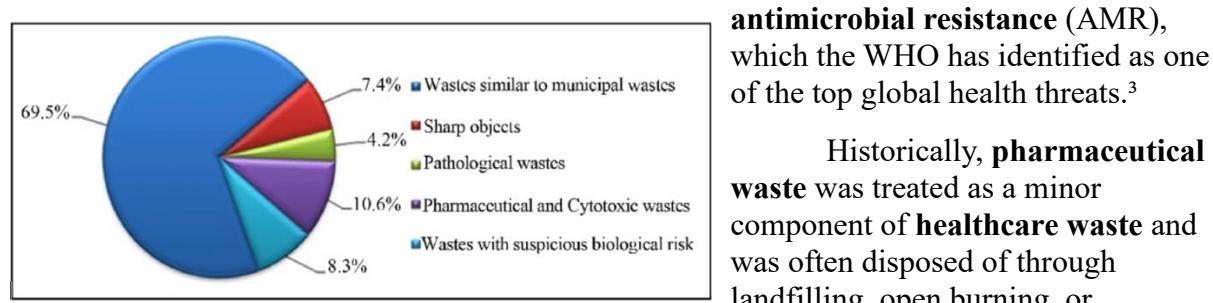


Southern China International MUN

Official Background Guide

World Health Organization: On measures to address pharmaceutical waste management in healthcare and industrial sectors.

Agenda overseen by: Simran Tilwani


1. Description of the Issue

1.1 History of the Issue

With the rapid expansion of global healthcare systems and pharmaceutical manufacturing, the generation of **pharmaceutical waste** has emerged as a critical public health and environmental concern. **Pharmaceutical waste** refers to unused, expired, contaminated, or residual medicinal products and by-products generated throughout the lifecycle of pharmaceuticals—from production and distribution to consumption and disposal. Improper management of such waste poses risks to human health, ecosystems, and the integrity of healthcare systems, making it an issue of increasing relevance to the World Health Organization (WHO) and the United Nations as a whole.¹

Pharmaceutical waste management is closely linked to several United Nations priorities, including Sustainable Development Goal (SDG) 3: Good Health and Well-Being, SDG 6: Clean Water and Sanitation, and SDG 12: Responsible Consumption and Production.² When **pharmaceutical waste** is inadequately treated or disposed of, **active pharmaceutical ingredients** (APIs) may enter water systems and soil, where they persist due to their chemical stability and biological activity. This environmental contamination has been associated with ecological toxicity, endocrine disruption in wildlife, and increased risks of

antimicrobial resistance (AMR), which the WHO has identified as one of the top global health threats.³

Historically, **pharmaceutical waste** was treated as a minor component of **healthcare waste** and was often disposed of through landfilling, open burning, or discharge into sewage systems. Prior to the late 20th century, limited regulatory attention was given to pharmaceutical residues due to lower medicine consumption rates and less intensive industrial drug production.⁶ However, the post–World War II expansion of healthcare access and the globalization of pharmaceutical markets led to a significant increase in both healthcare- and industry-generated pharmaceutical waste.

By the 1980s and 1990s, scientific studies began detecting pharmaceutical residues in surface water, groundwater, and drinking water supplies. These findings prompted growing concern among international organizations. In 1999, the WHO published its first comprehensive guidelines on the Safe Management of Wastes from Health-Care Activities, formally

recognizing **pharmaceutical waste** as a distinct hazard requiring specialized handling and disposal methods.⁴ Updated editions of these guidelines further emphasized proper segregation, high-temperature incineration, and environmentally sound treatment options, particularly for cytotoxic and antimicrobial drugs.⁷

The nature of **pharmaceutical waste** management varies substantially between regions. High-income countries often rely on advanced incineration facilities, regulated take-back programs, and strict waste segregation protocols. In contrast, many low- and middle-income countries lack adequate infrastructure, resulting in practices such as open dumping or uncontrolled burning.⁸ **Industrial pharmaceutical waste** has become an additional concern, particularly in countries hosting large-scale manufacturing facilities, where untreated or poorly treated effluents have been linked to exceptionally high concentrations of APIs in nearby water bodies.⁹

The effects of mismanaged **pharmaceutical waste** are multifaceted. Environmentally, it contributes to biodiversity loss and contamination of aquatic ecosystems. From a public health perspective, it increases the risk of accidental poisoning, disrupts hormonal systems, and accelerates the development of AMR. Economically, these consequences impose long-term burdens on healthcare systems by increasing treatment costs and reducing the effectiveness of existing medicines.³

1.2 Recent Development

In recent years, **pharmaceutical waste** management has gained heightened international attention due to rising global medicine consumption, expanded pharmaceutical manufacturing in emerging economies, and increasing awareness of **antimicrobial resistance**. The COVID-19 pandemic further intensified this issue, generating unprecedented quantities of expired medicines, vaccine vials, diagnostic kits, and chemical waste, many of which overwhelmed existing waste management systems.¹⁰

A major recent development has been the expanded involvement of new countries in pharmaceutical production. Nations such as India and China have become central suppliers of generic medicines, while several African and Southeast Asian countries have expanded domestic manufacturing capacity. While this has improved access to essential medicines, it has also raised concerns about industrial pharmaceutical effluent management and transboundary environmental pollution.¹¹

Furthermore, the WHO and partner organizations have increasingly emphasized the link between **pharmaceutical waste** and the global AMR crisis. Environmental exposure to sub-therapeutic concentrations of antibiotics is now recognized as a key driver of resistance development, prompting calls for stricter controls on pharmaceutical discharges and waste treatment standards.³

New circumstances have also emerged through policy innovation and technological development. Several countries have implemented medicine take-back programs, extended producer responsibility (EPR) frameworks, and green pharmacy initiatives aimed at reducing **pharmaceutical waste** at the source. Advances in wastewater treatment technologies—such as advanced oxidation processes and membrane filtration—have demonstrated effectiveness in removing pharmaceutical residues, though high costs and technical complexity limit their adoption in resource-constrained settings.⁹

As a result, the topic has evolved from a narrow focus on disposal to a broader emphasis on lifecycle-based management, international cooperation, and prevention strategies. The WHO

increasingly frames **pharmaceutical waste** management as an integral component of health system strengthening and global health security, rather than solely an environmental concern.¹²

Key Terms

Pharmaceutical waste - Waste containing medicinal products, including expired drugs, unused medications, contaminated packaging, and production residues.⁴

Active Pharmaceutical Ingredients (APIs) - Biologically active components of medicines that can remain environmentally persistent if not properly removed during waste treatment.⁵

Healthcare waste - Waste generated by healthcare activities, including infectious, chemical, and pharmaceutical waste.⁴

Industrial pharmaceutical waste - Waste produced during pharmaceutical manufacturing, formulation, and packaging processes.

Antimicrobial resistance (AMR) - The ability of microorganisms to resist antimicrobial treatments, exacerbated by environmental exposure to antimicrobial residues.³

2. Emphasis of the Discourse

2.1 Right Wing Approach

Conservative or right-leaning policymakers tend to prioritize economic efficiency, limited government intervention, market-driven solutions, and national sovereignty when addressing **pharmaceutical waste** management. From this perspective, pharmaceutical production and healthcare delivery are viewed as essential economic sectors that should not be overburdened by extensive international regulations or costly compliance requirements.¹³

Traditionalist policymakers often argue that excessive regulation of pharmaceutical waste—particularly in the industrial sector—may increase production costs, disrupt global medicine supply chains, and reduce access to affordable drugs. This concern is especially pronounced in countries that host large pharmaceutical manufacturing hubs or rely heavily on private-sector healthcare systems. Conservatives therefore tend to favor voluntary industry standards, public-private partnerships, and technological innovation rather than binding international mandates.¹⁴

The benefits of a conservative approach include preserving pharmaceutical innovation, maintaining competitive drug pricing, and encouraging efficiency through market incentives. Industry-led waste reduction initiatives and investment in cleaner production technologies can emerge organically when supported by tax incentives or deregulation.¹⁵

However, the costs of this approach are significant. Reliance on voluntary compliance may result in inconsistent enforcement, particularly in regions with weaker governance. Furthermore, insufficient oversight of pharmaceutical effluents has been linked to environmental contamination and the acceleration of **antimicrobial resistance**, undermining long-term public health outcomes.¹ Critics argue that market-based approaches alone are insufficient to address a problem with transboundary and public-good characteristics.

2.2 Left Wing Approach

Liberal or left-leaning policymakers approach **pharmaceutical waste** management through the lens of public health protection, environmental justice, and international cooperation. Progressive policymakers often view **pharmaceutical waste** as a collective risk that requires strong regulatory frameworks and multilateral coordination. From this perspective, healthcare and environmental protection are considered state responsibilities that justify government intervention.¹⁶

Left-wing approaches typically support binding regulations on pharmaceutical disposal, extended producer responsibility (EPR), mandatory take-back programs, and stricter controls on industrial effluents. These measures aim to hold pharmaceutical manufacturers accountable for the full lifecycle of their products, including post-consumption waste.¹⁷ Progressives also emphasize the disproportionate impact of pharmaceutical pollution on low-income communities and developing countries, framing the issue as one of global equity.

The benefits of a liberal approach include stronger environmental safeguards, reduced pharmaceutical residues in water systems, and a more coordinated global response to **antimicrobial resistance**. Regulatory oversight can also strengthen public trust in healthcare systems and pharmaceutical governance.¹

Nevertheless, this approach carries notable costs. Stricter regulations may increase production expenses, potentially raising drug prices or discouraging pharmaceutical investment in certain regions. Developing countries, in particular, may struggle to implement complex regulatory systems without substantial financial and technical assistance.⁸ As a result, critics caution that overly rigid frameworks may unintentionally reduce access to essential medicines.

2.3 Stance of intergovernmental organizations

Intergovernmental organizations (IGOs) play a central role in shaping the global response to **pharmaceutical waste** management. The World Health Organization (WHO) is the most pertinent body, framing **pharmaceutical waste** as both a health systems issue and an environmental health risk. The WHO emphasizes safe segregation, treatment, and disposal of pharmaceutical waste, particularly in healthcare settings, while linking improper waste management to **antimicrobial resistance** and health system fragility.¹

Other relevant IGOs include the United Nations Environment Programme (UNEP), which focuses on the environmental impacts of pharmaceutical residues, and the World Bank, which provides financing and technical assistance for **healthcare waste** infrastructure in low- and middle-income countries.¹⁸ The Basel Convention, while not health-specific, is also relevant due to its governance of hazardous waste movement across borders.

Countries with significant pharmaceutical manufacturing capacity—such as India, China, Germany, Switzerland, and the United States—hold substantial influence within these organizations, as they possess both economic interests and technical expertise. At the same time, countries with limited waste management infrastructure often advocate within IGOs for capacity-building, financial support, and technology transfer.⁸

2.4 Stance of developed countries

Developed countries generally approach **pharmaceutical waste** management from a position of regulatory capacity and technological advantage. Many high-income countries have already implemented advanced **healthcare waste** segregation systems, pharmaceutical take-

back programs, and high-temperature incineration facilities.¹⁹ Countries such as Germany, Sweden, Japan, and Canada emphasize environmental sustainability and compliance with international best practices.

The primary motives of developed countries include protecting public health, maintaining environmental quality, and demonstrating leadership in global health governance. Many of these states also seek to prevent pharmaceutical pollution from undermining progress against **antimicrobial resistance** domestically.¹

However, developed countries are not entirely aligned. While some advocate for stricter global standards, others—particularly those with strong pharmaceutical industries—remain cautious about regulations that could disadvantage domestic manufacturers or reduce global competitiveness. The United States, for example, often favors voluntary guidelines and industry-led initiatives over binding international commitments.¹⁵

As a result, developed countries pursue differing aims: some prioritize environmental leadership and precautionary regulation, while others emphasize innovation, economic flexibility, and national regulatory autonomy.

2.5 stance of developing countries

Developing countries approach **pharmaceutical waste** management from a position shaped by resource constraints, expanding healthcare access, and growing participation in global pharmaceutical supply chains. For many low- and middle-income countries (LMICs), the primary health priority remains improving access to essential medicines rather than regulating post-consumption waste. As a result, **pharmaceutical waste** management is often viewed as a secondary concern despite its long-term public health and environmental consequences.⁸

Several developing countries are deeply involved in this issue due to their dual roles as medicine consumers and pharmaceutical manufacturers. Countries such as India, China, Bangladesh, Kenya, Nigeria, and Vietnam have rapidly expanded pharmaceutical production capacity, particularly in the generic medicines sector.²⁰ While this has improved affordability and availability of medicines domestically and globally, it has also increased the volume of **industrial pharmaceutical waste** and effluent generated within their borders. In many cases, waste treatment infrastructure has not expanded at the same pace as production.¹⁸

The motives of developing countries are largely pragmatic. Governments seek to balance public health needs, economic growth, and environmental protection while operating under limited fiscal and technical capacity. Pharmaceutical manufacturing provides employment, foreign investment, and export revenue, making policymakers cautious about regulations that could discourage industry growth or relocation.²¹ At the same time, developing countries are increasingly aware that poor **pharmaceutical waste** management contributes to water contamination, **antimicrobial resistance**, and long-term healthcare costs, which disproportionately burden already strained health systems.³

Developing countries are not fully aligned in their approaches to **pharmaceutical waste** management. Some middle-income countries with stronger regulatory capacity, such as India and Brazil, have begun introducing stricter effluent standards, take-back programs, and national **healthcare waste** guidelines.¹⁸ Others, particularly low-income or conflict-affected states, continue to rely on informal disposal practices due to limited infrastructure, governance challenges, or competing development priorities.⁸ This divergence creates uneven implementation of international guidance across regions.

The aims of developing countries therefore vary. Some prioritize capacity-building, technology transfer, and financial assistance from international organizations to improve waste management systems. Others emphasize the need for policy flexibility, arguing that uniform global standards may unfairly penalize countries still in earlier stages of industrial and healthcare development.²¹ Many developing states advocate within WHO and UN forums for shared responsibility, asserting that **pharmaceutical waste** generated through global supply chains should not be managed solely at the expense of producer countries.

Tensions often arise between the interests of developing and developed countries. While developed countries may push for stricter environmental and **pharmaceutical waste** regulations, developing countries frequently argue that such measures increase production costs and risk limiting access to affordable medicines.²⁰ Developing states also highlight the historical role of developed countries in driving global pharmaceutical consumption and stress that environmental responsibility should be accompanied by financial support, regulatory guidance, and equitable burden-sharing.²²

Overall, developing countries tend to support international cooperation and non-binding frameworks that allow gradual implementation, capacity development, and national adaptation. Their stance emphasizes the need to address **pharmaceutical waste** management in a manner that does not compromise economic development or access to essential healthcare, while still contributing to global public health and environmental protection goals.³

3.Possible Solutions

3.1 In Favor for Developed Countries

Developed countries generally support solutions that emphasize regulatory oversight, technological innovation, and lifecycle accountability. These states often possess advanced waste treatment infrastructure, strong regulatory institutions, and well-established pharmaceutical industries, enabling them to pursue more comprehensive waste management frameworks.

One widely supported solution among developed countries is the expansion of extended producer responsibility (EPR) schemes. Under EPR models, pharmaceutical manufacturers are held responsible for the collection, treatment, and disposal of unused or expired medicines.²³ This approach aligns with developed countries' motives of environmental protection and public accountability while shifting part of the financial burden from governments to private industry. The benefit of EPR lies in incentivizing waste reduction at the design stage; however, it can increase production costs and may face resistance from pharmaceutical companies concerned about reduced competitiveness.²⁰

Another favored solution is the implementation of nationwide pharmaceutical take-back programs, often operated through pharmacies or local governments. Countries such as Sweden, Germany, and Canada have demonstrated that take-back schemes can significantly reduce improper household disposal of medicines.²⁴ These programs are relatively effective in high-income settings where public awareness and infrastructure already exist. However, their global scalability is limited, as they require sustained funding, public participation, and secure disposal facilities.

Developed countries also support advanced wastewater treatment technologies, including membrane filtration and advanced oxidation processes, to remove pharmaceutical residues

from hospital and industrial effluents.¹⁸ While these technologies are effective, their high capital and maintenance costs make them impractical for many developing regions. As a result, critics argue that such solutions risk widening the gap between countries with and without access to advanced treatment infrastructure.

Overall, solutions favored by developed countries are pragmatic within high-income contexts but often rely on financial capacity, technological expertise, and regulatory enforcement that are not universally available. As such, their global implementation would likely require adaptation, technical assistance, and international funding mechanisms.

3.2 In Favor for Developing Countries

Developing countries tend to support solutions that emphasize capacity-building, gradual implementation, and international support, reflecting their economic constraints and development priorities. Rather than adopting highly technical or capital-intensive systems, these states often advocate for incremental improvements that strengthen existing **healthcare waste** management frameworks.

One commonly supported solution is the integration of **pharmaceutical waste** into broader **healthcare waste** management systems, rather than creating separate, specialized infrastructures.¹ This approach allows developing countries to improve **pharmaceutical waste** handling through enhanced segregation, basic treatment, and safer disposal practices without excessive financial burden. The benefit of this strategy is its affordability and feasibility; however, it may be less effective in addressing industrial pharmaceutical effluents.

Developing countries also emphasize the importance of international financial and technical assistance, particularly through the WHO, World Bank, and UN Environment Programme.⁸ Capacity-building initiatives—such as training healthcare workers, developing national guidelines, and improving regulatory monitoring—are viewed as essential precursors to stricter waste controls. While these measures are pragmatic, their success depends heavily on sustained donor engagement and domestic political commitment.

Another solution supported by developing states is the adoption of non-binding international guidelines rather than legally binding regulations. This allows governments to tailor policies to national contexts and avoid economic disruption to pharmaceutical manufacturing sectors.²⁵ Developing countries argue that premature enforcement of strict standards could increase medicine prices or discourage foreign investment, undermining access to essential drugs.

In terms of industrial waste, many developing countries advocate for shared responsibility across global supply chains, asserting that pharmaceutical companies headquartered in developed countries should contribute financially or technologically to waste treatment in producer countries.²⁶ While this approach promotes equity, it remains politically sensitive and has yet to be formalized in most international agreements.

4. Keep in Mind the Following

When researching and debating **pharmaceutical waste** management, you should remain aware that this topic sits at the intersection of public health, environmental protection, economic development, and healthcare access. While **pharmaceutical waste** is often discussed alongside broader environmental issues, the committee's focus must remain on health-related impacts and feasible health-system solutions, consistent with the mandate of

the World Health Organization. You should also recognize that disparities in infrastructure, regulatory capacity, and economic resources significantly shape national positions.

Overgeneralizing solutions or assuming uniform state capacity risks oversimplifying the debate and undermining constructive policy discussion. Some questions to guide you through your research are the following:

1. *How does your country currently define and regulate pharmaceutical waste within its healthcare system, and how effective are these measures in practice?*
2. *What role does pharmaceutical manufacturing play in your country's economy, and how does this influence its willingness to regulate industrial pharmaceutical waste?*
3. *To what extent does your country prioritize pharmaceutical waste management compared to other public health challenges, such as access to medicines or infectious disease control?*
4. *How does your country balance environmental protection with the need to maintain affordable and accessible medicines for its population?*
5. *Does your country support binding international regulations on pharmaceutical waste, or does it favor voluntary guidelines and national discretion? Why?*
6. *What responsibilities, if any, should pharmaceutical manufacturers bear for waste generated throughout the lifecycle of their products, including post-consumption disposal?*
7. *How does your country view the link between pharmaceutical waste mismanagement and antimicrobial resistance, and how does this shape its policy priorities?*
8. *In what ways can international cooperation—such as funding, technology transfer, or shared standards—support pharmaceutical waste management without infringing on national sovereignty?*

5.Evaluation

Pharmaceutical waste management has gained increasing attention in recent years as its impacts on public health and environmental sustainability become more evident. Rising concerns surrounding improper disposal, pharmaceutical pollution, and **antimicrobial resistance** have highlighted the need for coordinated national and international responses. While this issue presents challenges for all countries, it is particularly pressing for developing nations that face limited waste management infrastructure alongside expanding healthcare systems and pharmaceutical production.

Balancing environmental protection, public health priorities, and access to essential medicines remains a complex task. Addressing pharmaceutical waste will require innovative, flexible, and cooperative approaches that account for differing national capacities and development levels. You are encouraged to think beyond existing frameworks and work toward realistic, health-centered solutions that reflect both national interests and global responsibility.

6.Bibliography

1. Chartier, Yves, et al. Safe Management of Wastes from Health-Care Activities Second Edition. 2014, iris.who.int/server/api/core/bitstreams/4daece5e-1220-47f5-903c-8c2a14fcd778/content.

2. United Nations. “The 17 Sustainable Development Goals.” United Nations, 2015, sdgs.un.org/goals.
3. World Health Organization. Global Antimicrobial Resistance Surveillance System : Manual for Early Implementation. World Health Organization, 2015.
4. ---. “Health-Care Waste.” WHO, World Health Organization: WHO, 24 Oct. 2024, www.who.int/news-room/fact-sheets/detail/health-care-waste.
5. Lacy, Rodolfo. “Full Report.” OECD, 2025, www.oecd.org/en/publications/pharmaceutical-residues-in-freshwater_c936f42d-en/full-report.html.
6. UNESCO. Emerging Pollutants. UNESCO Publishing, 2025.
7. “Health Care Facilities.” Who.int, 2023, [www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health-\(wash\)/health-care-facilities](http://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health-(wash)/health-care-facilities).
8. “Health Care Waste Management.” World Bank , World Bank Health-Nutrition-Population, June 2003, openknowledge.worldbank.org/server/api/core/bitstreams/466da2f2-8413-54fe-892f-7d08c30b8587/content.
9. Responsible Manufacturing Effluent Management Technical Guidance Document. efpia.eu/media/677262/technical-guidance.pdf.
10. Environment, U. N. “COVID-19 Waste Management Factsheets.” UNEP - UN Environment Programme, 22 June 2020, www.unep.org/resources/factsheet/covid-19-waste-management-factsheets.
11. “Rethinking Health Systems Supply Chains, Pharmaceuticals and Medical Products: Decarbonising Health Systems across OECD Countries.” OECD, 2025, www.oecd.org/en/publications/decarbonising-health-systems-across-oecd-countries_5ac2b24b-en/full-report/rethinking-health-systems-supply-chains-pharmaceuticals-and-medical-products_1052fcf7.html.
12. World Health Organization. Regional Office For Europe. Environmentally Sustainable Health Systems : A Strategic Document. World Health Organization, Regional Office For Europe, 2017.
13. Cortez, Rafael, and Meaghan Quinlan-Davidson. Private Sector Engagement in Public Health Systems. 2022.
14. “Pharmaceutical Policies in OECD Countries.” OECD Labour Market and Social Policy Occasional Papers, Apr. 2000, <https://doi.org/10.1787/323807375536>.
15. “Welcome to Zscaler Directory Authentication.” Pharmaexcipients.com, 2026, www.pharmaexcipients.com/news/sustainability-manufacturing-pharmaceuticals/. Accessed 4 Jan. 2026.
16. ---. “Transforming Our World: The 2030 Agenda for Sustainable Development.” United Nations, 2015, sdgs.un.org/2030agenda.
17. “Expanding Extended Producer Responsibility: Challenges and Opportunities.” ISPE | International Society for Pharmaceutical Engineering, 23 Dec. 2025, ispe.org/pharmaceutical-engineering/november-december-2025/expanding-extended-producer-responsibility. Accessed 4 Jan. 2026.
18. Environment, UN. “Pharmaceuticals in the Environment.” UNEP - UN Environment Programme, 2020, www.unep.org/topics/chemicals-and-pollution-action/chemicals-management/pollution-and-health/pharmaceuticals.
19. “Full Report: Achieving Food Loss and Waste Reduction.” OECD, 2025, www.oecd.org/en/publications/achieving-food-loss-and-waste-reduction_edd99594-en/full-report.html.

20. "Pharmaceuticals and Medical Technologies." OECD, www.oecd.org/en/topics/policy-issues/pharmaceuticals-and-medical-technologies.html.
21. Health Care Waste Management. Washington, DC, 2003, <https://doi.org/10.1596/9732>. Accessed 4 Jan. 2026.
22. UNDP. UNDP'S STRATEGY for INCLUSIVE and SUSTAINABLE GROWTH. 2017, www.undp.org/sites/g/files/zskgke326/files/publications/UNDPs%20Inclusive%20and%20Sustainable%20Growth-final.pdf.
23. "Revised Waste Framework Directive Enters into Force." Environment, 16 Oct. 2025, environment.ec.europa.eu/news/revised-waste-framework-directive-enters-force-2025-10-16_en.
24. Leong Seng Wang, et al. "Unused Medicine Take-Back Programmes: A Systematic Review." Journal of Pharmaceutical Policy and Practice, vol. 17, no. 1, BioMed Central, Sept. 2024, <https://doi.org/10.1080/20523211.2024.2395535>.
25. Chen, Zhuoer. "The Role of Non-Legally Binding International Agreements in Global Governance." Advances in Social Science, Education and Humanities Research, Atlantis Press SARL, 2025, pp. 774–87, https://doi.org/10.2991/978-2-38476-440-2_88. Accessed 4 Jan. 2026.
26. "Sustainable Pharmaceutical Supply Chains | PCI CDMO." PCI Services, 6 June 2025, pci.com/resources/sustainable-pharmaceutical-supply-chain/.